Acta Cryst. (1965). 18, 1085

The crystal structure of Yb₃Ge₅*. By GORDON S. SMITH, QUINTIN JOHNSON, and A. G. THARP[†], Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 16 November 1964)

During a current investigation of compounds formed by lanthanide metals with germanium, powder X-ray diffraction patterns indicated the formation of a germanide of ytterbium unlike previously known germanides and silicides of transition metals. This phase was observed to occur in all preparations with a Ge:Yb gram-atom ratio of 2:1 or slightly lower. We were able to isolate well-formed single crystals of this compound and subsequently determine its formula to be Yb₃Ge₅.

Following the establishment of this composition, a search of the literature for 3:5 compounds disclosed that Yb₃Ge₅ is isotypic with Th₃Pt₅ and Th₃Pd₅ which were recently reported by Thomson (1963).

The preparations were made by arc-melting the components in a Zr-gettered argon atmosphere. Minimum power was used to lower the volatilization of ytterbium metal. Each preparation was turned and remelted several times to homogenize the sample. Oxidation was not apparent in any of the preparations. Excellent powder patterns were obtained without having to anneal the samples.

Oscillation and Weissenberg photographs showed the crystals to be hexagonal, of diffraction symmetry 6/mmm with no systematic extinctions. Unit-cell dimensions, determined from the crystal used for intensity measurements, are $a = 6.80_3 \pm 0.01$, $c = 4.16_6 \pm 0.01$ Å (λ Mo $K\alpha = 0.7107$ Å). Integrated intensities for 48 *hkl* reflections were measured on a General Electric XRD 5 diffractometer equipped with a goniostat and krypton-filled proportional counter. The radiation used was zirconium-filtered Mo $K\alpha$. The crystal shape approximated a parallelopiped, $0.03 \times 0.03 \times 0.12$ mm.

Simple considerations of the h00 and 00/ reflections obviated the need for Patterson analysis. A regular alternation in the magnitudes of the 00/ reflections indicated layers of Ge separated by c/2 from layers of Yb, the ratio of Ge atoms to Yb being ~ 1.5 . From h00, strong for h=3n, it was concluded that the x (and y) parameters within the layers were near multiples of $\frac{1}{5}$. Two such models, both formulated in the space group $P\delta 2m$ (International Tables for X-ray Crystallography, 1952), were derived; one had the stoichiometry Yb₂Ge₃ and the other, Yb₃Ge₅.

Structure factor calculations proved conclusive in favor of the latter, and this structure, moreover, was capable of major refinement *via* the full-matrix least-squares program of Sparks, Gantzel & Trueblood (ACA program no. 317, unpublished). The scattering factors were the Hartree– Fock–Slater values of Hanson, Herman, Lea & Skillman (1964) for the neutral atoms. As an approximation to a weighting scheme appropriate for diffractometric data (Smith & Alexander, 1963), the following formalism was used: $w = F_0^{\pm}$ for $F_o < A$, $w = A^{5/4}F_0^{-1}$ for $F_o > A$. On the scale of the structure-factor data in Table 2, A is 122.

After five cycles with isotropic temperature factors, the parameter shifts were negligible, and the *R* value stood at 7.1%; 5.8% if extinction is assumed for the 002 reflection. The final parameters are listed in Table 1. Owing to neglect of absorption as well as anomalous dispersion corrections for both Yb and Ge, the temperature parameters are not physically realistic. For these reasons also we decided not to explore the possibility of any definite departure from the full 3:5 stoichiometry. By way of comparison, Th₃Pd₅ has only a narrow range of homogeneity (Thomson, 1963). Based on Yb₃Ge₅ composition, the calculated density is 8.77 g.cm^{-3} .

The structure is derived from the C32-AlB₂ type by the systematic removal of one sixth of the Ge atoms, *i.e.* the composition is 3:5 instead of 3:6. As a result the larger hexagonal cell has $a \sim 3^{\pm} \times a$ of a hypothetical ytterbiumgermanium AlB2-type structure. A final difference Fourier synthesis gives no indication of a partial occupancy of these vacant sites. Moreover, the positional shifts are such that Ge(2) largely fills up the holes introduced. The coordination is not as high nor as regular as in the AlB₂-type. Table 3 lists these interatomic distances. With atomic radii of 1.94 and 1.37 Å (Teatum, Gschneidner & Waber, 1959) for Yb (valence=2) and Ge, respectively, the observed distances indicate smaller-than-usual sizes for Ge and Yb. We also note that the sum of the atomic volumes (Teatum, Gschneidner & Waber, 1959) for Yb₃Ge₅ exceeds the observed unit cell volume by ~ 40 %.

This is apparently the only known silicide or germanide to have this formula in a *structural* sense. Lundin (1961) has concluded that several of the rare earth silicides previously reported by Mayer, Banks & Post (1962) and independently by Tharp (1962) to have the AlB₂ structure are actually M_3Si_5 compounds. The unit-cell volumes of these compounds are prohibitively small and cannot contain one formula unit. It would appear preferable to describe these compounds as defect AlB₂ structures of $MSi_{1.67}$ stoichiometry.

References

- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- International Tables for X-Ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

LUNDIN, C. E. (1961). Lake Arrowhead, California Rare Earth Research Conference. Paper V-6. New York: The Macmillan Company.

Table 1. Atomic positions and parameters

3 Yb in 3(f), x, 0, 0; etc. $x = 0.3604 \pm 0.0010$ $B = -0.05 \pm 0.22$ Ų2 Ge(1) in $2(d), \frac{1}{3}, \frac{2}{3}, \frac{1}{2};$ etc. $B = 0.08 \pm 0.62$ Ų3 Ge(2) in $3(g), x, 0, \frac{1}{2};$ etc. $x = 0.7471 \pm 0.0037$ $B = 0.88 \pm 0.50$ Ų

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

[†] Permanent address: Chemistry Department, California State College, Long Beach, California.

Table 2. Observed and calculated structure factors for Yb3Ge5

a, ^o	Fc	F _o	hkl	a,°	F _c	F	hkt
233.71	152-9	157.8	221	180.00	19-9	26.9	010
351.04	86.1	90-1	231	180-00	14.0	25.2	020
275-46	61.9	54.6	241	0.00	226-2	219.4	030
343-86	80.2	78-2	331	180.00	7.5	0.0	040
0.00	289.0	235.0	002	0.00	69-1	64.1	050
180.00	17.6	19.6	012	133-09	122-2	133-4	110
180.00	9+4	15-7	022	343-88	98+4	107.0	120
0.00	198-4	1.97.0	032	127-78	61.6	64.8	130
180.00	9.9	0.0	042	93:10	97-1	100.9	140
130-90	108+4	112-9	112	252-15	77.5	85.6	150
243-20	3.3*1	88.7	(22	249-46	12913	132.8	330
138151	5519	58.4	1.32	79569	59-2	64.3	230
94-31	8955	90+2	143	228+53	8291	90·0	240
249.65	116.1	:16.0	233	1.5*61	12755	136-6	330
77-49	5212	53.5	232	0.00	51-1	58.8	001
0.00	5210	5014	000	130.00	10.1	1519	011
130-00	10.8	14.0	013	0.00	:17.6	100.7	021
0.00	65.6	6:22	023	0.00	7953	84-3	031
1:00-00	6913	6.6.3	033	130.00	71.0	81.7	041
130-31	1.017	17019	11<	0.00	78-5	78-2	051
35644	35-9	.000	123	119926	203.6	313-3	11:
(26)43	4610	445	133	5175	4316	56*3	131
235-45	127-4	126+5	223	127.88	36-4	37-9	131
0.00	202.0	185-1	004	138-58	147.0	152+5	141

MAYER, I. P., BANKS, E. & POST, B. (1962). J. Phys. Chem. 66, 693.

SMITH, G. S. & ALEXANDER, L. E. (1963). Acta Cryst. 16, 462.

TEATUM, E., GSCHNEIDNER, K., JR. & WABER, J. (1959). Los Alamos Scientific Laboratory, Report No. LA 2345.

THARP, A. G. (1962). J. Phys. Chem. 66, 758.

THOMSON, J. R. (1963). Acta Cryst. 16, 320.

Table 3. Interatomic distances Å for Yb₃Ge₅

The e.s.d.'s include only the uncertainties in the positional parameters.

Yb-4 Ge(2) -4 Ge(1) -2 Ge(2) -4 Yb -2 Yb	3.015 ± 0.006 Å 3.016 ± 0.002 3.356 ± 0.021 3.778 ± 0.005 4.166
Ge(1) - 3 Ge(2) - 6 Yb - 3 Ge(1)	$\begin{array}{c} 2\cdot585\pm0.017\\ 3\cdot016\pm0.002\\ 3\cdot928\end{array}$
$\begin{array}{r} \text{Ge(2)} - 2 \ \text{Ge(1)} \\ - 2 \ \text{Ge(2)} \\ - 4 \ \text{Yb} \\ - 2 \ \text{Yb} \end{array}$	$\begin{array}{c} 2 \cdot 585 \pm 0 \cdot 017 \\ 2 \cdot 979 \pm 0 \cdot 044 \\ 3 \cdot 015 \pm 0 \cdot 006 \\ 3 \cdot 356 \pm 0 \cdot 021 \end{array}$

Acta Cryst. (1965). 18, 1086

The rate of refinement of coordinates for the minimum residual method in three dimensions. By E. STANLEY, Department of Physics, University of Saskatchewan, Regina Campus, Regina, Saskatchewan, Canada

(Received 2 November 1964)

Bhuiya & Stanley (1963) proposed a method of refinement in which each parameter, u_j , is varied in turn from $u_j - n\Delta u_j$ to $u_j + n\Delta u_j$ in 2n increments of Δu_j . The lowest value of the residual, $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, within the range of variation is noted and the corresponding value of u_j is taken as the best value of the parameter within the permitted range of variation. This method has worked very well in twodimensional studies and the rate of refinement in two dimen-

sions has been studied in detail by Stanley (1964) who showed that, for small errors, the rate of refinement could be related to the average error in the coordinates on the basis of the figures given by Luzzati (1952) for the residual as a function of error in coordinates and sin θ .

Tables 1 and 2 give values of the residual R for centrosymmetric and non-centrosymmetric space groups, for three-dimensional data, as a function of the standard devi-

Table 1. Values of $(\bar{1})R$ as a function of $\sigma(r)$ and B

$\sigma(r)$	0.0	1.0	2.0	3.0	щ. О	5.0	ń. 0	7.0	8.0	9.0	10.0
0.00	0.000	0.000	0.000	0.000	0.000	0,00+)	0,000	0.000	0.000	0.000	0.000
0.02	0.114	0,109	0.105	0.100	0.096	0.092	0.088	0.084	0. 080	0.077	0.074
0.04	0,219	0,211	0,202	0.194	0.186	0.177	0.140	0.162	0.166	0.149	0.1+3
0,06	0.314	0.302	0,291	0.291	0.208	0.256	0.246	0.235	0. 226	0. 217	0,209
0.08	0,398	0.384	0.370	0.356	0.342	0.328	0.315	0.302	0.291	0. 280	0.270
0.10	0.471	0,456	0.439	0.424	0. +08	0.393	0.378	0.363	0.350	0. 337	0.326
0.12	0.534	0,518	0.501	0.484	0.460	0	0.433	0. +18	0.403	0.390	0.377
0.14	0.587	0,570	0.553	0.535	0.517	0.500	0.483	0.467	0,451	0	0.423
0.16	0.630	0.614	0.597	0.579	0.551	0.5++	0.526	0.510	0.494	0. 119	0,465
0.18	0.667	0.651	0.65+	0.010	0.599	0.582	0.564	0.548	0.532	0.517	0.503
0.20	0.696	0.681	0.665	0.648	0.631	0.614	0.597	0.581	0.565	0,551	0,536
0. 22	0.720	0.905	0.690	0.674	0.658	0.6+2	0.6%6	0.610	0,595	0.580	0.566
0.24	0.738	0.725	0.711	0.696	0.681	U. 665	0.650	0,635	0.620	0.606	0.592
0.26	0.752	0.940	0.727	0.714	0.700	0.685	0.671	0.657	0.643	0.629	0.616
0,28	0.964	0.753	0.741	0.729	0.716	0.702	0.689	0.676	0.663	0.650	0.637
0.30	0. 772	0.763	0.752	0.741	0.729	0.117	0. r0+±	0.692	0.679	0.667	0.656
0.32	0.780	0.771	0.762	0.751	0.740	0,129	0.117	0,106	0.694	0.683	0.672
0.34	0.786	0.778	0.769	0.760	0.750	0.135	0.729	0.718	0.707	0.696	0.686
0,36	0.791	0,784	0.776	0.767	0,758	0.749	0.139	0.729	0.719	0, 109	0* 0,48
0. ამ	0.755	0,788	0.781	0.773	U.165	0.756	0.141	0.738	0.729	0.720	0,711
0. +0	0.750	0.793	0.786	0.779	0.771	0.763	0.155	0.746	0.738	0.789	0.721
0.42	0.801	0.796	0,790	0.786	0.777	0.769	0,761	0.754	0.746	0.738	0,730
0.4*	0,804	0.759	0.794	0.788	0.781	0.775	0.701	0.760	0.753	0.105	0.738
0.46	0.807	0.80%	0, 197	0,791	0.785	0.119	0.773	0.766	0.759	0.752	0.745
0.48	0.809	0,805	0,800	0.795	0.789	0.783	0.777	0.771	0.764	0.758	0.752
ົາ, 50	0.817	0.807	0.802	0.798	0,792	0, 181	0,781	0,775	0,770	0.763	J. 757

Table 2. Values of (1)R as a function of $\sigma(r)$ and B

	B											
σ	(0)	0.0	i.0		<u>.</u> 0	4.0	5.0	6.0	0	8.0	_ 9. 0	<u> </u>
	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
	0.02	0.073	0,070	0,068	0,065	0.065	0.059	0,056	0.054	0.051	0.049	0.047
	0.04	0.1.4	0.138	0.132	0,127	0,121	0.116	0.110	0.106	0.101	0.097	0.093
	0.06	0.211	0,203	0.195	0.187	0.179	0.171	0.163	0.156	0.149	0.1.3	J. 137
	0.08	0.812	0.262	0.252	0, 242	0.232	0. 222	0.213	0.204	0.195	0.187	0,180
	0,10	0,325	0.314	0,303	0, 291	0,280	0.263	8ر.پ •0	0. <1	0,238	0.229	0, 220
	0.12	0.340	0.359	0.346	0.334	0.322	0.310	0,298	0.287	0,276	0.266	0.257
	0,14	0.409	0.397	0.384	0.371	0.359	0.346	0.334	0.322	0.311	0.300	0, 290
	0.16	0.441	0.489	0,416	0.404	0.391	0. 378	0.365	0.353	0.3+2	0.331	0.321
	0.18	0.467	0.456	0.443	0.431	0.418	0. ±05	0.398	0.381	0.369	0.358	0,348
	0.20	0,488	0.477	0.466	0.454	0.441	0.429	0.417	0.405	0.394	0.383	0.372
	0,22	0,505	0. ±95	0.48.	0.473	0.461	0. ++ 9	0.457	0, +26	0. +15	0.404	0.394
	0.24	0.519	0.509	0.499	0.488	0.4477	0.406	0.455	0.444	0.+34	0. + 23	0.413
	0.26	0.529	0.520	0.511	0.501	0.491	0.480	0.470	0.460	0.450	0.440	0.431
	0.28	0.537	0,529	0,521	0.512	0.502	0,493	0.485	0. +73	0.464	0. +53	0.446
	0.30	0.544	0.536	0.525	0.521	0.015	0.503	0.494	0. +85	0	0.467	0.459
	0.32	0.549	0.543	0.536	0.528	0.5%0	0.512	0.504	0. +95	0.487	0.479	0.471
	0.34	0.503	0. 341	0.541	0,534	0.521	0.519	0.512	0.504	0. + 96	0 39	0,481
	0.36	0.557	0.552	0.546	0.540	0.533	0 . ⊃≿6	0.519	0.512	0,505	0.498	0.491
	0.38	0,560	0.555	0.550	0.544	0.538	0.532	0.520	0.519	0.512	0.505	0.499
	0.40	0.563	0.558	0.553	0,548	0.5+3	0.537	0.531	0.525	0.518	0.512	0.506
	0, 42	0,565	0,561	0.557	0.552	0.547	0.541	0.506	0.530	0.524	0.218	0.513
	0.44	0.561	0.563	0.559	0,555	0.550	0.5-15	0.5.10	0.535	0.529	0.524	0.519
	0,46	0.56 ະ	0,565	0.562	0,558	0.553	0.549	0.5+++	0.539	0.534	0.529	0.524
	0,48	0.540	0.567	0.564	0,560	0.556	0.552	0.547	0.542	0.5:8	0.553	0.528
	0.50	0.572	0.569	0.566	0.562	ა. 558	0,55+	0,550	0,546	0,541	0.537	0,533